6—10 апреля 2014 года в Сочи III Международную Конференцию «Генетика старения и долголетия»

Мы

Serum IGF-1 bioactivity is low in 100+ and their offspring

	Controls (n=80)	Centenarians' Offspring (n=192)	Centenarians (n=106)	
Total IGF-I (nmol/L)	17 (13.6-20.8)	14.4 (11.9-18.2)	93 (7.1-12.9)	
IGF-I Bioactivity (pmol/L)	161 (134-187)	144 (119-170)	132 (107-157)	
Total IGF-II (nmol/L)	114 (89-137)	134 (92-168)	72 (55-117)	
Glucose (mmol/L)	4.9 (4.5-5.4)	4.8 (4.3-5.4)	4.6 (4.2-5.1)	
Insulin (pmol L)	74 (51-105)	71 (44-103)	39 (27-70)	
HOMA2-B%	128 (98-166)	137 (100-174)	109 (81-152)	
HOMA2-S%	62 (44-93)	68 (45-110)	122 (68-174)	

IGF-I bioactivity was evaluated through an innovative IGF-I kinase receptor activation (KIRA) assay that S. Lamberts, L. Hofland and J. Janssen, University of Rotterdam, recently developed. This assay quantify phosphorylation of tyrosine residues of the activated IGF-I receptor after stimulation with human serum in vitro. Unlike IGF-I immunoassays, the IGF-I KIRA assay takes into account modifying effects of IGFBPs and proteases on the interaction between the light of the protection in blood.

Vitale et al., AGING 2012

Genome maintenance: Candidate pathways in human aging

- Long-lived individuals have as many common disease risk alleles as controls
- No strong evidence for contribution of common variants to human longevity other than APOE alleles
- → Centenarians may harbor rare and protective variants

RAD17	MSH6
RAD9A	TP53
ATR	RAD1
MSH3	POLD4
ERCC3	AKT151
LIG1	OGG1
FAM175A	RAD51
RPTOR	BRCA1
Ku80	ATM
RECQL	XRCC4
SIRT6	CDKN2A
INSR	PRKAA1

Pathways of the top genes:

- -Base excision repair (BER)
- -Nucleotide excision repair (NER)
- -Mismatch repair (MMR)
- -Double strand break (DSB) repair
- -Insulin/IGF1 signaling (IIS)

51 controls and 51 centenarians

POLE4

Double strand break (DSB) signaling and repair

Comparative Genomics of Aging

Vadim Gladyshev

Brigham and Women's Hospital
Harvard Medical School

Genetics of Aging and Longevity, Sochi Apr 10, 2014

Brandt's bat b a Lifespan: >40 years Body mass: 4-8 g Echolocation Hybernation (>6 months) Powered flight Seim et al (2013) Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii. Nature Communications.

- RNA-seq
- 23 species +10 from databases (10 orders)
- · Young, male adults
- · 3 organs: brain, kidney, and liver
- De novo transcriptome assembly for organisms with no complete genomes
- <u>Seeking additional samples</u>
 (target: 50 mammals, 20 rodents)

Two widely accepted Breast Carcinoma Prognosis Signatures

Wang et al. Lancet 2005, List = 76 topranked genes

Van't Veer, et al. Nature 2002, List = 70 topranked genes

	70: gens set	70- gene set	64: gens set	97- gane set	GBR	17- gene set	gene set	
HUMACTI	8	1	1	11	1	0	0	
76 pene set		1	3	11	1	0	1	
76 green set			1	4	1	0	0	
64 pour set				12	1	0	1	
97-gress set					-	0	5	
CSR						1	1	
15 sees sal							0	

Clinical Cancer Research September 15, 2007 vol. 13 no. 18 5355-5360